By François Liret

Ce cours d'arithmétique s'adresse aux étudiants en Licence de mathématiques. Les premiers chapitres rappellent les fondamentaux (divisibilité dans Z, congruence) et l'algèbre de base nécessaire (relations d'équivalence, ensembles quotients), avant de proposer ensuite un cours complet, solide, valable pour toute los angeles Licence. L'ensemble est précis, structuré et illustré de nombreux exemples. Des exercices corrigés sont proposés en fin de chapitre.

**Read or Download Arithmétique : Cours et exercices corrigés (Mathématiques) (French Edition) PDF**

**Similar mathematics_1 books**

**Arithmétique et travaux pratiques cycle d'observation classe de sixième**

Manuel de mathématiques, niveau sixième. Cet ouvrage fait partie de l. a. assortment Lebossé-Hémery dont les manuels furent à l’enseignement des mathématiques ce que le Bled et le Bescherelle furent à celui du français.

- Identifiability of Parametric Models
- Automorphic Forms and Geometry of Arithmetic Varieties: Advanced Studies in Pure Mathematics, Vol. 15
- Computational Analysis: AMAT, Ankara, May 2015 Selected Contributions (Springer Proceedings in Mathematics & Statistics)
- Survey of Applicable Mathematics
- Maths en scène - Maths en Seine
- The History of Arithmetic

**Extra resources for Arithmétique : Cours et exercices corrigés (Mathématiques) (French Edition)**

**Sample text**

Since, moreover, T is a continuous mapping, this proves that it is topological. Let us now show that Tis a geodesic mapping. For this it is enough to demonstrate that the inverse map r- 1 is geodesic. Let us take any plane in £ 0 • It is given by the equation (ay) +b = 0, where a is a vector, and b is a scalar. Substituting Tx into this equationinplaceofy, we obtain the equation for its image in R under r- 1 • The equation (a, Tx) +b = 0 becomes linear with respect to x after multiplication by eo (x + Ax), and, consequently, is the equation of plane R.

Let us join the 38 II. CONVEX BODIES AND CONVEX SURFACES ends of the curve 1 by a simple geodesic open-polygon ak be the angles between consecutive links in the polygon, and a and ~ be angles formed by the initial and terminal link with 1 , all angles being taken from the side of the region bounded by the curves 1 and r. The right swerve of the curve is given by r in the right-hand semi-neighborhood. Let The left swerve is defined similarly. The swerve has the following properties. If the point C divides the curvey into 11 and12.

Then we obtain: And this is just the system from which we find the coefficients of the corresponding derivation formulae for Euclidean surfaces. We can draw a similar conclusion with regard to the coefficients and B! Bi . , = r! , = B2Xu + B2Xv, Xu,,= where the coefficients r andB are expressed in terms of E, F, G, L, M and N in exactly the same way as the corresponding coefficients of the derivation formulae for Euclidean space surfaces. The conditions which the coefficients of the first and second fundamental forms have to satisfy may be obtained in the same way as for Euclidean space surfaces.